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So far we have looked at simple agents that solve problems based on searching (which may involve heuristics).
But consider the task of identifying a person. Such tasks are easy to do but tough to program and make a
machine do it as lot of this knowledge is implicit.
We know describe agents that can improve their behavior through diligent study of their own experiences

1 Machine Learning

By Machine Learning we mean “programs that learn”. The goals of studying machine learning are:

1. To understand what learning is (in algorithmic terms).

2. To build systems that are more flexible and can “program themselves”.

1.1 Definition of Learning

By learning, we mean any process by which a system improves its performance on a set of tasks as a result
of experience.
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Figure 1: A simple model of a learning system.
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1.2 Types of Learning

1. Rote Learning (memorization) In this type of learning, almost no inference is involved. Knowledge
is stored in a form that is the same as the one is which it was provided.

Rote Learning is useful if it is more efficient or expedient to retrieve a piece of stored data than it is
to recompute it (perhaps using search).

Examples:

• Assume an adversarial games where player1 chooses the max h value, and player2 chooses the
min h value. The h values at depth 3 are given. For player1’s turn, the value of a node at level
2 is the max value of a child at level 3, at level 1 is the min value of the children at level 2, and
the value at level 0 will be the max value at level 1.

Store the values computed, and use the stored value of a node rather than searching again. Storing
a position increases the effectiveness of the search i.e., the heuristic becomes more informed, or
the effective depth of the search is increased.

• On the Checkers game, Samuels found that by storing approximately 106 configurations and their
backed up evaluations the program could attain near expert-level performance. (The size of the
search space for checkers is approximately 1040).

2. Learning by Instruction In this type of learning, some transformation of knowledge is necessary
before it is stored for future use.

Example: Classroom instruction.

3. Learning by Induction (inductive inference) In this type of learning, given a set of examples,
the learner has to induce a set of general problem solving procedures.

Example: Syntax of a language.

4. Learning by Reinforcement (from exploration)

Example: A robot.

5. Learning by Deduction (deductive inference)

2 Inductive learning (IL)

Inductive learning is learning from examples and counterexamples. Vast majority of the learning techniques
fall in this category.
An example is an ordered pair (Xk, Ck), where Xk is a pattern (e.g. a vector of attribute values) and Ck is
its desired classification.

1. If we want to learn grammars, Xk is a string and Ck = 1 indicates that Xk is a valid string in the
language, and Ck = 0 not valid string. Examples might look like (ABCDAC, 1), (ACABBB, 0).

2. If we want to learn to classify images, Xk may be 2-d digitized image and Ck indicates its classification.

The task of an inductive learner is to learn a “concept description” or a function that

1. correctly classifies all (or most of) the training examples.

2. generalizes well on examples not used in training.

Different models of IL are decision trees, neural networks etc.

2



1 x2

f=0f=1

f=1 f=0

1 0

11 01

f=1 f=0

0010

x1x1

x2

x

(b)

f

00

11 1

1

1 10

00 0

x1

1 10 0

11
10

01
00

11
01

10
00

1 0

(c)(a)

Figure 2: A simple decision tree. (a) The set of examples. (b) Decision tree by testing x1 first is simpler.
Since the instances at the tip of arcs in the same set are identical (most uniform), no further test is needed.
(c) Decision tree by testing x2 first. The instances in the set at the tip of arcs are not uniform, therefore
more tests (on x1) are necessary to completely classify the training set.

2.1 Learning Decision trees

Consider the training set that is shown in the figure reffig2.
In this example, most people would agree that (b) is probably a better hypothesis to choose than (c) for a
variety of reasons. I.e. (b) is, in some sense, simpler than (c). We would, in general, prefer the simpler tree
while all other things being equal. One might be inclined, in the absence of any other information, to select
the simplest explanation or hypothesis that is consistent with the data.
This goes by the name Ockham’s razor (after William of Ockham). In the case of decision trees, we can
generate “simple” trees by picking “the most informative” attributes to rest on. Note however that it is not
always a simple matter to decide how to measure the simplicity or complexity of a hypothesis.

3 Digression: Information theory

3.1 Information content of a message

Information content of a message is related to how surprising the message is. Considering a message m

whose probability is P , Shannon defined the information content of the message as

I(m) = Ip = − log
2
Pbits.

Example: Information provided by a message that announces the outcome of a fair coin toss (”it is heads”)
is − log

2

1

2
= 1 bit (since the probability of ”heads” is 1/2). The expected amount of information associated

with messages that announce the outcome of a fair coin toss = −(phlog2ph + ptlog2pt) = 1 bit where ph is
the probability of “heads,” pt is probability of “tails.”
Example: Suppose there are 8 equally probable messages, information content of a message is 3 bits. If each of
the outcomes is not equally likely, some of the messages will require more than 3 bits, some less than 3 bits, but
the average will be less than 3 bits. 2

3.2 Information content of a set

Consider a set S of instances. Let S be partitioned into N disjoint subsets (classes) C1, C2, · · · , CN , as in
Figure 3. (We use Ci to denote both the set Ci as well as the class name Ci.)
Suppose we select an instance s ∈ S, and announce that it belongs to class Cj . The probability of this message

is
|Cj |
|S| , so the information content of this message is − log

2

(

|Cj |
|S|

)

bits, and the expected information content
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Figure 3: A disjoint set.

of a message announcing the class membership of a random instance s ∈ S is

−
∑

j

|Cj |

|S|
· log

2

(

|Cj |

|S|

)

bits. (On average this much information is passed.)

4 Using Information Theory to Learn Decision Tree Classifiers

In this framework, classifying an instance is tantamount to acquiring the necessary information from the
given instances. The task of learner is to find the most effective way (i.e., choose the questions to ask about
the instances to be classified) to acquire the necessary information.
In the case of a decision tree learning algorithm, this includes identification of a appropriate sequence of
tests to perform on the properties of the instances to be classified.
Example:
Instances are described by 3 attributes.
A1 = {tall, short} = {t, s}
A2 = {dark, blonde, red} = {d, b, r}
A3 = {blue, brown} = {l, w}

Training set:
I1 = (t d l) +
I2 = (s d l) +
I3 = (t b l) -
I4 = (t r l) -
I5 = (s b l) -
I6 = (t b w) +
I7 = (t d w) +
I8 = (s b w) +

Information content of this set is

Info(S) = −
3

8
log

2

3

8
−

5

8
log

2

5

8
= .954 bits

Testing of this set is shown in Figure 4.
Apply test A1, information content of subset of A1 is

Et = −
2

5
log

2

2

5
−

3

5
log

2

3

5
= 0.971 bits

Es = −
2

3
log

2

2

3
−

1

3
log

2

1

3
= 0.918 bits

The expected information content after testing for A1 (probability following this branch) is

EA1
=

5

8
× Et +

3

8
× Es = 0.95 bits

Following the same procedure, we can calculate the information content for testing A2 and A3,

EA2
= 0.5 bits, EA3

= 0.607 bits.
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Figure 4: Information content of different tests. (a) Test for A1 first. (b) Test for A2 first. (c) Test A1 for
the b-subset after testing A2. (d) Test A3 for the b-subset after testing A2

The lower the E, the less information needed to go on from this point. We see that A2 is the most informative
attribute yield an estimated expected information gain of 0.954− 0.5 = 0.454 bits. So we pick A2 as the test
to perform first.
At the next level, we have the choice to test between A1 and A3, similarly we can calculate as follows:

EA2A1
=

4

8

[

2

4

(

−
1

2
log

2

1

2
−

1

2
log

2

1

2

)

+
2

4

(

−
1

2
log

2

1

2
−

1

2
log

2

1

2

)]

= 0.5 bits

EA2A3
= 0 bits.

4.0.1 Limitation of this method

There are situations that this approach does not work well. For example, If we have a diagnostic procedure
based on data of patients and SSN is used as a property, since SSN is unique for everyone, we have a complete
classification for any training set. But this obviously is not what we are looking for.
We can use an alternative criterion based on ”split information”. Consider a set of S of instances which is
tested on an attributed A.

−
∑

j

|Sj |

|S|
· log

2

(

|Sj |

|S|

)

bits. where S1,S2,...,Sk correspond to the subset of S that constitute a partition of S on the basis of values
of the attribute A.
If A is the SSN, k=|S|

split-info(S,A) = −
∑

j

1

|S|
· log

2

(

1

|S|

)

= log
2
(|S|)

bits.
We can define an information gain ratio,

G(S,A) =
info-gain(S,A)

split-info(S,A)

info-gain(S,A) = E − EA

where E is the information content of S, and EA the information content of S after testing on A.
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4.1 Overfitting

Given a hypothesis space H—in our case, the set of all possible decision trees defined using the given set
of attributes—we say that a particular hypothesis h of H (in our case, a particular decision tree) is said to
overfit the training data, if there exists a hypothesis h′ of H, such that h has less error than that of h′ on
the training data, but the error of h′ is less than that of h over the entire distribution of instances.
To overcome the overfitting problem, we can divide the examples into training set and a validation set. Then
use the following training approach:

• Build a decision tree correctly classify the training set. Extract rules from the tree by doing a depth
first traversal of the tree to find all the paths from the root to the leaves. Each rule is of form,
(A1 = a) AND (B1 = b) . . . ⇒ class = i

• For each condition in each rule, see if the accuracy of test data can be improved by chopping that
condition. If so, modify the rule S accordingly.

During the classification, if a unique label can not be assigned, we guess the classification based on the
distribution of instances.
A number of variations on the basic decision tree algorithm (including methods for dealing with continuous
valued inputs, alternative splitting criteria, and alternative pruning criteria) are available in the literature.
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