
How to make your first
Robot

By Frits “fritsl” Lyneborg
http://letsmakerobots.com/user/4

PDF by Ajster

Find out more on:
http://letsmakerobots.com/

http://letsmakerobots.com/user/4
http://letsmakerobots.com/

2

Contents Page
1.
2.
3. Introduction
4. Before you start
5. How to start
6. Items needed – PICAXE
7. Items needed – Motor Driver
8. Items needed – Servo
9. Items needed – Sensor
10. Items needed – Motors
11. Items needed – Other Items
12. Getting Started
13. Sticking Together
14. The Brains
15. Project Board
16. Project Board 2
17. Motors
18. Servo
19. Sensor
20. Let there be Life
21. Setting the Sensor
22. Fully Built
23. Starting to Program
24. Programming
25. Sample Code
26. Sample Code – continued
27. Add some Extras
28. How to find Picaxe manuals
29. 28 pin Project Board (AXE020), Picaxe for dummies
30. Ground!
31. V
32. V1 & V2
33. Power on the board
34. Peripherals
35. A, B, C
36. D, E, F
37. G, H
38. Something (slightly) interesting...
39. How to connect SRF05 to picaxe 28 pin project board
40. SRF05 Code

3

Introduction
Time to build: 2 hours
URL to more information:
http://video.google.com/googleplayer.swf?docI...

Cost to build: $85
Actuators / output devices: 2 geared motors
CPU: Picaxe
Power source: 4 AA batteries
Programming language: Picaxe basic
Sensors / input devices: Sharp IR
Target environment: indoor

This project requires no knowledge of electronics, and it will not get much into that, it will
only start you up with a robot really fast.

It is based on a system called Picaxe that is really simple yet powerful.

If you know that you want to get more into the electronics part of building, spend more time
on learning, and use the system called Arduino, you should
check out this First robot-project that uses Arduino and a breadboard.

http://video.google.com/googleplayer.swf?docId=5734178030844828508&hl=en
http://letsmakerobots.com/taxonomy/term/44
http://letsmakerobots.com/taxonomy/term/22
http://letsmakerobots.com/taxonomy/term/19
http://letsmakerobots.com/taxonomy/term/24
http://letsmakerobots.com/taxonomy/term/46
http://letsmakerobots.com/taxonomy/term/7
http://letsmakerobots.com/node/2164

4

Before you Start
Welcome. before we get started, here are some things you should know:

For your own sake, read this before you go any further

If you are looking for an even cheaper and faster project, this one might have your
interest: http://letsmakerobots.com/node/87

If you have never build a robot before, the video here might inspire to how easy it is
to construct, you do not need special materials to build robots:
http://letsmakerobots.com/node/35

To inspire to where you can go from here, I have made a part II

OK - Now let´s get started :)

http://letsmakerobots.com/node/386
http://letsmakerobots.com/node/87
http://letsmakerobots.com/node/35
http://letsmakerobots.com/node/254

5

How to start
How to start a cool* robot for approx $85

This is cool* because:
● The electronics used are ”real parts” (not little home-made things that wont

really work unless you spend hours of tweaking, and not a kit that you just
assemble and that´s it).

● It is EASY to do the basics, you have a robot within one hour!
● You can evolve from here, even with the same parts (if you can bare to take

your robot apart).
● It is cheap.
● This is serious, but fun. This is the coolest Robot-beginners-project in any

way, end of story! :)

6

Items Needed
Links are just where I happened to find the items from a world wide web
perspective. You can use any (web) shop you'd like, of course.
Please see this page for "where to get Picaxe"

Prices are approx. As far as possible, try to get it all from the same shop, and from a
shop located in your own country; to get the best deals and faster deliverance etc.

1x PICAXE-28X1 Starter Pack
The 28 pin project board in this package is like a game of Mario Bros; Fun and full of extras
and hidden features, making you want to play over and again. This includes the main brain,
the PICAXE-28X1.

This is a little expansive, but it is only the first time I recommend you to get this, it includes
a lot of nice basic stuff, you get a CD-ROM with lots of manuals, cables, a board, the
Microprocessor etc. Actually it is EXTREMELY cheap. Similar packages cost up to 10
times this price!

Be sure to get the USB-version, images in the shops may not match, and show a serial-
cable when you are ordering a USB. When buying the USB-version, it is not necessary to
get the USB-cable as an extra item, even though it is also sold separately.

You can get it here

Once you have bought this one time, just buy a new board and accomplishing Micro-
controller for future projects, much cheaper, you are a Robot-builder with all the basics
done.

http://letsmakerobots.com/node/213

7

Items Needed 2

To connect things smooth, you may also want to invest in a lot of
female to female jumpers like these. I recommend getting a lot, and I recommend it
strongly. However it is not necessary to build this. But they are so nice to have.

1x L293D Motor Driver

The name says it all, more about this chip later :) You can get it here

http://letsmakerobots.com/node/1191
http://194.201.138.187/epages/Store.storefront/?ObjectPath=/Shops/Store.TechSupplies/Products/ICO030

8

Items Needed 3

1x PICAXE Servo Upgrade Pack

An easy way to get a servo topped with some small parts needed for this project.
You can also get any standard servo, the pins shown on the image, and a single
330 Ohm resistor instead of the yellow chip, if you should wish.
You can get the full package here

What is a Servo?

A Servo is a cornerstone in most robotic appliances. To put it short it is a little box
with wires to it, and an axle that can turn some 200 degrees. on this axle you can
mount a disc or some other peripheral that comes with the servo. The 3 wires are:
2 for power, and one for signal. The signal-wire goes to something that controls a
servo, in this case that is the micro-controller Result is that the micro-controller
can decide to where the axle should turn, and this is pretty handy; You can program
something to physically move to a certain position.

http://194.201.138.187/epages/Store.storefront/?ObjectPath=/Shops/Store.TechSupplies/Products/AXE030

9

Items Needed 4

1x Sharp GP2D120 IR Sensor - 11.5" / Analogue

11.5" or another range will do. Only do not buy the "Digital version" of the Sharp
sensors for this kind of project, they do not measure distance as the analogue ones
does.

You can get it here

Be sure to get the red/black/white wires for it. This is not always included, and it is a
non-standard socket!

This is actually not a favourite of mine, I usually use ultrasonic sensors, such as
the SRF05 (they also sell it at the picaxe-store where they call it SRF005 and have
a picture of the back of an SRF04 in the shop! But it is the right one, and I did tell
them but..). Anyway; The SRF05 is much more reliable and precise. It is also faster,
but costs a little more, is a little more complicated to write code to, and a little more
complex to install - so it is not used here, but if you are fresh, buy one of these
instead ;)

If you go for the SRF05,
I have made a small walkthrough to connecting the SRF05 here

http://www.roboticsconnection.com/p-23-sharp-gp2d120-ir-sensor.aspx
http://letsmakerobots.com/node/65
http://194.201.138.187/epages/Store.storefront/?ObjectPath=/Shops/Store.TechSupplies/Products/SRF005
http://letsmakerobots.com/node/66

10

Items Needed 5

2x Gear Motors with wheels

The higher the ratio, the stronger robot, the lower, the faster robot. I recommend
ratio somewhere between 120:1 to 210:1 for this kind of project. The reason the
robot on the video is so slow, is that is has a high ratio. Slower is easier or
beginners, as it it easier to understand and follow what happens.

Price, total for 2+2: 15 USD You can get some here

http://www.hobbyengineering.com/H1415.html

11

Items Needed 6
You will also need:

● Double sided adhesive tape (for mounting, the foamy sort is best)
● Some wire
● Ordinary adhesive tape (to isolate a cable perhaps)
● Simple soldering equipment (Any cheap kit will do fine)
● An ordinary small nipper or scissor to cut things
● A screwdriver

You could also get, while you're at it:

● Some LED's if you want your robot to be able to signal to the world or make
cool flashing-effects.

● More servos to make your robot move more..erh..arms? Or servos with servos
on etc.

● A tiny speaker if you would like your robot to produce sound-effects and
communicate to you.

● Some sort of belt-track system. Robots with belt tracks are way cool as well,
and the controller and the rest will be the same.
Here is an example to what you could take it to with belt tracks TAMYIA
makes cool belt-track-systems, and this one is also a favorite of mine
Here is more info on belt-tracks.

● Any kind of line-sensor-kit, to turn your robot into a Sumo, a Line-follower,
stop it from driving off tables, and everything else that needs "a look down".

How to find Manuals for the Picaxe products

http://letsmakerobots.com/node/25
http://letsmakerobots.com/node/145
http://letsmakerobots.com/node/387
http://letsmakerobots.com/node/2033

12

Getting Started
OK! You have ordered the stuff, received your package(s), you want to build :)
well.. Let´s get started!

First mount the wheels to your geared motors. And add tires (rubber bands in this
case).

An easy way to mount stuff for fast (and amazingly solid and lasting) robots is
double adhesive tape.

13

Sticking Together
Insert the batteries, so you have a realistic idea of weight and balance. Add some
double adhesive tape to the button of the server as well..

Chose your own design, you can also add extra materials if my “design” is too
simple.

Main thing is that we have it all glued together: Batteries, Servo and wheels. And
wheels and servo can turn freely, and it can stand on it´s wheels somehow,
balancing or not.

14

The Brains
Take out the batteries, to avoid burning something unintended!

And now for the brains. You should have a project board similar to this.

(and so this may be of interest to you: http://letsmakerobots.com/node/75)

Notice that it has a chip in it. Take it out. The chip is a Darlington-driver that is quite
handy placed there on the board, but we will not need it for this project, and we
need it´s space, so away with that chip! It is easiest to get chips out of the socket
by inserting a normal flat screwdriver just below it, move it in, and tip up the chip
carefully.

http://letsmakerobots.com/node/75

15

Project Board
 A chip fresh, brand new chip usually do not fit into a socket right away. You will
have to press it sideways down on a table, to bend all the legs in an angle so it will
fit. (Legs go down, into the sockets).

Make sure all the legs are in the sockets. If you bought the Servo upgrade from
Picaxe, you have a yellow chip. Put it in place of the Darlington. Note that not all
holes in the project board are filled out with the yellow chip. We only need the eight
to the right in the picture, as this is just simple resistors, we do not need to feed
them extra.

This yellow chip is actually just 8 * 330 Ohm's resistors in a neat package. And
so, if you should have a resistor, you can just insert it instead in slot numbered
“0”, as this is the only one we will use, when we only use one servo.

Also insert the large chip, the brains, the micro-
controller, the Picaxe 28(version number) into
the project board.

Important to turn this the right way. Note that
there is a little mark in one end, and so on the
board. These must go together.

This chip will get power from the board via 2 of
its legs.

All the remaining 26 legs are connected around
on the board, and they will be programmable for
you, so you can send current in and out to detect
things and control things with the programs you
upload into this micro-controller

16

Project Board 2
Now insert the L293D motor-controller.

This will take 4 of the outputs from the micro-controller, and turn them into 2.
Sounds silly? Well.. Any ordinary output from the micro-controller can only be “on”
or “off”. So just using these would (example) only make your robot able to drive
forward or stop. Not reverse! That may come in unhandy when facing a wall.

The board is made so smart that the 2 (now reversible) outputs get their own space,
marked (A) and (B) just next to the motor-controller (Bottom right on the picture).
More about this later.

On the backside of the board you may find some strange plastic. This has no
use, it is just a leftover from manufacturing. (They “dip” the board in warm tin,
and parts they do not want so get tinned is sealed with this stuff) Just peal it off
when you need the holes they seal.

17

Motors
Take 4 pieces of wire, and solder them to the 4 “A & B” - holes. (or use some other
means of connecting 4 cables to the standard sized holes, one can buy all sorts of
standard sockets and pins etc.)

If you have some of that heat-shrinking plastic or some tape, it may be a good
idea to support the wires with this.

The 2 “A” goes to one motor, and the 2 “B” to the other. It does not matter which
is which, as long as “A” is connected to one motor, and “B” to the two poles of the
other.

18

Servo
Now let´s hook up the servo.

If you should read the Picaxe documentation, you will read that you should use 2
different power-sources if you add servos. To put it short; We don´t mind here, this is
a simple robot, and to my experience this works just fine.

You will need so solder an extra pin to output “0”, if you want to use the standard
servo connection. Such a pin comes with the Picaxe upgrade pack (a whole row,
actually), but you only need one for one servo, and they can be bought in any
electronics store.

If your servos cable is (Black, Red, White) or (Black, Red, Yellow), the Black should
be to the edge of the board. Mine was (Brown, Red, Orange), and so the brown
goes to the edge.

The hint is usually the Red; It is what is referred to as V, or any of these, used in
random: (“V”, “V+”, “+”, “1”). This is where current comes from.

The black (or brown in my case) is G, or (“G”, “0” or “-”). This is also known as
“Ground”, and is where current goes to. (the 2 poles, remember your physics-
lessons?)

The last colour is then “the signal” (White, Yellow or Orange)

A servo needs both "+ & -" or "V & G", and a signal.

Some other devices may only need "Ground" and "Signal" (G & V), and some may
both need V, G, Input and output. Can be confusing in the beginning, and everything
is always named different (like I just did here), but after a while you will get the logic,
and it is actually extremely simple - Even I get it now ;)

19

Sensor
Now let´s hook up “the head”, the Sharp IR-sensor.

(If you bought an SRF005 or similar instead, you should
look here on how to hook this up, it is different from this!)

There are a million ways to do this, but here are clues:
● Red needs to be connected to V1, that is (in this setup) anything marked “V”,

or is connected to this.
● Black goes to G, anywhere on the board.
● White is to be connected to Analogue input 1.

If you read the documentation that comes with the project-board, you can read how
to attach the accompanying ribbon-cable, and use this.

What I have done on the picture, is to cut off a cable from an old burned out servo,
soldered in a pin, and connected the whole thing just as a servo. You can use it to
see which colours of the Sharp goes to which row on the board.

Weather you use the ribbons or “my method” of connecting the Sharp IR, you
should also connect the 3 remaining analogue input to V. I had some jumpers
laying, and you can see that all 3 connections left are short cut. (The last pair, not
touched, are just two “Ground”, no need to short cut these). If you use the ribbon,
you can just connect the inputs to V (or ground for that matter) by connecting the
wires in pairs.

The reason it is important to shortcut the unused analogue inputs here is that the
are “left floating”. This means that you will get all sorts of weird readings where you
try to read if these are not connected. (to put it short, this is a fast paced
walkthrough ;)

20

Let there be Life

Now for some fun! (Or "Let there be life")

Somehow you should get the Red wire from your batteries (+) hooked up to the red
wire on the project board (V). And the black (-) to (G). How you do this depends on
your equipment. If there is a battery-clip on both batteries and board you should still
make sure that the "+" from the batteries ends up to the "V" on the board.
Sometimes (though not often) the clips can be reversed to each other, and just
putting two matching clips together is no guarantee that + gets to V and - gets to G!
Make sure, or you will se melting things and smoke! Do not feed the board with
more than 6V (no 9V batteries, even though the clip fits)

As a note; We are only working with one power-supply here. Later you will want to
use same Ground, but both V1 and V2. That way your chips can get one source,
and the motors etc. another (stronger) voltage.

21

Setting the Sensor
Install the Picaxe Programming Editor on a PC, follow the manuals to get your
Jack / USB / Serial hooked up, Insert the batteries in your (still headless) robot,
insert the jack stick in your robot.. enter the programming editor, and write servo 0,
150 wait 2

press F5, wait for the program to transfer, and your servo gives a little yank (or
spins, depending on which way it was).

This code (servo 0, 150 wait 2) is actually "2 lines". Some people (and some
editors) find it more correct to write it like

servo 0, 150 wait 2

because it is actually 2 commands. I, however, like to keep same "orders" in one
line, and the Picaxe editor allows for this way of editing.

The "Wait 2" is not really needed, only it is :D Reason is that normally you let your
program run around in loops, and the picaxe "stays alive". However here, in the
testing phase, your program reaches the end, and stops.

This makes the Picaxe execute an "end" command, and this makes the servo-
command stop before it really got to do much, as it happens just after the servo-
command. And the servo needs continuously to be fed the pulse from the Picaxe, or
else it will do nothing, it has no brains.

Therefore, just for now, you need to tell the Picaxe to wait in 2 seconds.. or
something.. so it will send out signals to the servo BEFORE it shuts itself down :)

All this "wait 2" is actually added later to this post, as there has been some
changes in the Picaxe's that made it necessary.

Something else that has happened since I originally wrote this tutorial is, that
a new command has been introduced, and you should read the manual and
look for the command "servopos" - it solves many problems that you might
bump into.

If something goes wrong here, you need to mess with the manuals and ports, power
supply etc., until no errors are reported, and all seems to work, To test, try to write
servo 0, 200 wait 2

and press F5 The servos disc should spin a little and stop. To get back, write:
servo 0, 150 wait 2 and press F5 Now your robot's “neck” is facing forward. Stick
on the “head” - the Sharp IR

22

Fully Built

Hello world, I am a robot, ready to take your commands and explore the world :)
You're done building the basics!

The design may wary, you may have used other parts etc.. But if you have
connected as described, on the next page are some tips to get started
programming your robot.

23

Starting to Program
Enter (copy-paste) this code into your editor, and press F5 while the robot is
connected:

+++

main: readadc 1, b1 ' takes the voltage returned to analogue pin 1, and puts it
into variable b1 debug ' this draws out all variables to the editor.

goto main

 +++

 Now take your hand in front of the robot´s head and notice how the variable b1
changes value. You can use the knowledge gained to decide what should happen
when (how close things should get before..)

Now I advise you to put your robot up on a matchbox or similar, as the wheels will
start turning.

Enter (copy-paste) this code into your editor, and press F5 while the robot is
connected:

+++

high 4

low 5

+++

One of the wheels should turn in one direction. Does your wheels turn forward? If
so, this is the instruction for that wheel to turn forward.

If the wheel is turning backwards, you can try this:

+++

low 4

high 5

+++

24

Programming...
To turn the other wheel, you need to enter:

+++

high 6

low 7

+++

(or the other way around for opposite direction.)

The servo you have already tried.

All the way to one side is:

servo 0, 75 wait 2

the other side is:

servo 1, 225 wait 2

- and centre:

servo 1, 150 wait 2

On the next page is a small program that will (should, if all is well, and you insert the
right parameters for high/low to suit your wiring to the motors) make the robot drive
around, stop in front of things, look to each side to decide which is the best, turn that
way, and drive towards new adventures.

25

+++
Symbol dangerlevel = 70 ' how far away should thing be, before we react?
symbol turn = 300 ' this sets how much should be turned
symbol servo_turn = 700 ' This sets for how long time we should wait for the servo to
turn (depending on it´s speed) before we measure distance

main: ' the main loop
readadc 1, b1 ' read how much distance ahead
if b1 < dangerlevel then
gosub nodanger ' if nothing ahead, drive forward
else
gosub whichway ' if obstacle ahead then decide which way is better
end if
goto main ' this ends the loop, the rest are only sub-routines

nodanger:' this should be your combination to make the robot drive forward, these you
most likely need to adjust to fit the way you have wired your robots motors
high 5 : high 6 : low 4 : low 7
return

whichway:
gosub totalhalt ' first stop!

' Look one way:
gosub lturn ' look to one side
pause servo_turn ' wait for the servo to be finished turning
readadc 1, b1
gosub totalhalt

' Look the other way:
gosub rturn ' look to another side
pause servo_turn ' wait for the servo to be finished turning
readadc 1, b2
gosub totalhalt

' Decide which is the better way:
if b1<b2 then
gosub body_lturn
else
gosub body_rturn
end if
return

' … next page

26

' … continued

body_lturn:
high 6 : low 5 : low 7 : high 4 ' this should be your combination that turns the
robot one way
pause turn : gosub totalhalt
return

body_rturn:
high 5 : low 6 : low 4 : high 7 ' this should be your combination that turns the robot
the other way
pause turn : gosub totalhalt
return

rturn:
servo 0, 100 ' look to one side
return

lturn:
servo 0, 200 ' look to the other side
return

totalhalt:
low 4 : low 5 : low 6 : low 7 ' low on all 4 halts the robot!
servo 0,150 ' face forward
wait 1 ' freeze all for one second
return

+++

With some clever programming and tweaking, you can make the robot drive, turn its
head, make decisions, make small adjustments, turn towards “interesting holes”
such as doorways, all working at the same time, while driving. It looks pretty cool if
you make the robot spin while the head is turning ;)

Look in part II for code on this.

27

Add some Extras
Sound:

You can also add a small speaker to example pin 1 & ground, and write

Sound 1, (100, 5)

 - or within the example program above make it

Sound 1, (b1,5)

– to get funny sounds depending on the distance to objects ahead.

You could also attach a lamp or LED to pin 2 & ground, and write (remember LED´s
need to turn the right way around)

High 2

to turn on the lamp, and

Low 2

to turn it off ;)

- How about a Laser-pen, mounted on an extra servo? Then you could make the
robot turn the laser around, and turn it on and off, pointing out places.. you can do
anything now :)

Welcome to a very funny world of home-made robots, there are thousands of
sensors and actuators just waiting for you to hook them up and make robots
out of them :)

Remember to share with us what you have made, or perhaps is struggling to make,
what you learn etc. :)

You can also take a look here: Part II if you have even read this far ;)

http://letsmakerobots.com/node/254

28

How to find Picaxe Manuals
I think Picaxe is a great product.

But somebody should kick their web department. Sometimes people buy a Picaxe
product in another shop, and do not get the manual on print. "Find it on the web"..
yes, but where? They have a really crap web at Picaxe, a mix of info, links and
URL's not really well made at all

I OFTEN get questions about the manuals, so something is wrong!

This is the way I go about it, it could be done simpler with more direct links,
but here is how I tend to do it, because I can remember this, I just have to
remember step 1, and the rest comes naturally to me after many visits:

picaxe.co.uk -> Top menu, "DATASHEETS"

Main thing is; It is all very well documented, it is sometimes very hard to find, but it
is there, from the page picaxe.co.uk :)

Anyhow - that is the manuals for the boards, chips etc. Something else that you
want - this is very important:

Picaxe main manuals:

Section 1 - Getting Started

Section 2 - BASIC Commands

Section 3 - Interfacing circuits

Specially Section 2 - that is your friend in the everyday work with Picaxe.

http://letsmakerobots.com/picaxe.co.uk
http://letsmakerobots.com/picaxe.co.uk
http://www.rev-ed.co.uk/docs/picaxe_manual1.pdf
http://www.rev-ed.co.uk/docs/picaxe_manual2.pdf
http://www.rev-ed.co.uk/docs/picaxe_manual3.pdf

29

28 pin Project Board (AXE020), Picaxe for dummies

30

Ground!
Often you get something that you want to connect, and the documentation
says connect this to "Ground", or any other name often used in random. It
has many names, that are the same thing:

● Ground
● Usually "the black wire" if there is a red and a black
● G
● GND
● -
● 0
● Vee
● Vss
● Negative Supply

- All the same!

This is simply where current goes to when it comes from the other pole on the
battery (the positive, +).

When something can be connected to your board using "just a single wire", it
always also has to have a second wire, connected to this ground.

If you want to hook up to ground, you can use any of these connections on the
board:

31

V
Also referred to in random as :

● Positive supply
● "the red wire"
● +
● Current
● Power
● VCC
● V+
● B+
● VDD

Actually the reason for having a Micro-controller on a board is, that you should let
the micro-controller control when you send current to something (turn it on or off).

However, quite often, you will need to feed peripherals with current (and ground, this
goes unsaid), on top of what you send to it via the micro-controller

Perhaps you are connecting a Sharp IR range finder, it has 3 wires: Black, White
and Red. The black is Ground. The Red then will be V, to power the module, and
the white will be a signal returning from the Sharp module to the micro-controller on
your board.

Perhaps you want to control a Servo. That will also need a G and a V to power it´s
circuit and its motor. And on top of this, it needs a pulse-signal from the micro-
controller, the last wire - what colour it may be on the particular model.

The standard setup of the board looks like this, all these areas are V:

32

V1 & V2
So - what´s with the V1 / V2?

Well, everything returns to ground. But it can come from different sources. And they
can have different voltage.

This way you can power a servo with V2, while the pulses that signals to the servo
where it should turn to, is from the Micro-controller that runs on V1. All to the same
G.

This 28 pin Project Board has 2 options:

Standard: See illustration above. V1 & V2 are connected, result: There is only one
V. As you may have read from the documentation: It is the little jumper in the corner
that connects V1 & V2, and when it is on, there is only V & G on the board.

2 power supplies: See illustration below. Take off the jumper, and connect a
separate power-supply to V2 (and that power supplies G to ground, goes unsaid
from now ;) - and the board will have V1 to the circuits and inputs, V2 to power
external stuff, and G for all of it.

That way you can feed the chips with 5V, and the motors with 12V that would
otherwise kill the chips.

33

Power on the Board
So if you hook up a board with 2 power-supplies, this is where you have
current and ground:

34

Peripherals
.. What is left?

Only the interesting stuff! :)

Power they need, the peripherals.. But it is the inputs and outputs that are
interesting.

None of the above connections can be controlled by the Micro-controller, and unless
you burn something, the Micro-controller does not sense weather you connect
something to these or not.

This is where the input's and outputs come into the picture:

These connect to the Micro-controllers legs. Quite often, for advanced usage,
things can be altered; An input can be switched in mode, so that it is an output
etc. But you will figure that out, this is just the basics, as things are wired in
default.

35

A, B, C
A: The digital inputs:

Connect a switch to V1 and one of these. In the program editor you can then write
(let's say you have connected to leg 4, there are 8 in this area)

If pin4 = 1 then

...

B: The analogue inputs

How much current from V1 (or another source not more powerful then V1) comes to
this pin?

Well - it is not a question i ask, but what the pin asks :)

The answer is then returned into a variable, example, pin 2 out of the 4 in this area:

readadc 2, b1

Now the variable b1 is a value between 0-255, depending on how much current
from V1 (or another source not more powerful then V1) comes to this pin.

C: The IR-area

This is a quite undocumented feature on the board! It is used if you want to use
standard TV-remote control-protocols to send to your micro-controller

You can hook up IR ins-and out to anything, to measure IR, for instance to see if
something is near or far, or white or black.. but you will have to do with analogue
levels of signal and similar, you will not be able to transmit "signals" that can be
translated to numbers such as TV remotes does. Most IR remote controls use 38
KHz sub-carrier, and this area let´s you hook up to that quite simply. You should only
use it for that!

36

D, E, F
D: The Serial communication

The square on the picture should perhaps include the jack socket :) This is the serial
connection used to program and more.

You can also use output- and digital input pins for serial connection, but the ones on
D are hard-wired

E: Direct outputs from the picaxe

These should (only) be used if you are trying to communicate "chip to chip". I think
this is called TTL-level, where you let the chips talk to each other via pulses. This
should not be used to drive anything, but it should always be used if you want your
chip to talk to others, like in this example:

http://letsmakerobots.com/node/66

F: Output pins

These are what you should start with, IMHO: Connect a LED or something
(Remember LED´s should turn the right way around) to one of these (other LED-leg
to ground).. let´s say you connect to leg 3 out of the 8 in this area. Write:

high 3

to turn power on

low 3

to turn it off

Note that if you are using a motor controller, you should not use leg 4, 5, 6 and 7 for
anything else!

These pins are also used for standard servo connection.

http://letsmakerobots.com/node/66

37

G, H
G: Motor connections A & B

The board is made for the typical applications, and one is where you want to control
2 motors, and being able to switch directions on them.

Of course if you only can turn things on or off, it can be hard to reverse a motor.

You can purchase a L293D motor controller - chip, and place it in here.

Then read the documentation for how to make output 4, 5, 6 and 7 control 2 way-
drive of 2 motors connected to A & B outputs. (one motor to A and one to B, not 2
times A+B)

H: The reset switch

If you mount your board in a case or something, and would like to be able to
remote-reset the Micro-controller, add a switch to this, press it and.. Hello? I
remember nothing, let´s start all over!

38

Something (slightly) interesting...
or not.

You will most likely only see names like VCC, VEE, VSS and VDD on chip pins. If
you see VCC and VEE it means that the chip is made out of bipolar junction
transistors (aka BJTs) and if you see VSS and VDD it means that the chip is made
out of metal-oxide -semiconductor field effect transistors (aka MOSFETs).

VCC means "Voltage at the collector pin of a BJT"

VEE means "Voltage at the emitter pin of a BJT"

VSS means "Voltage at the source pin of a MOSFET"

VDD means "Voltage at the drain pin of a MOSFET"

I know Frits won't really care about that information :-)

By jip

http://letsmakerobots.com/user/8

39

How to connect SRF05 to Picaxe 28 pin Project board

URL to more information:
http://www.rev-ed.co.uk/docs/srf005.pdf

Sensors / input devices: SRF05

Description:

If you are a newbie, you may only have learned that the Picaxe 28 pin Project
Board has some inputs and outputs.. And you may have purchased an SRF05
(that Picaxe refers to as SRF005), and you are trying to connect the darn thing..
without result?

Reason is likely to be that you are connecting the output from the Picaxe to the
SRF05 through the darlington on the board.

The SRF05 needs (like many other things) a Pulse-signal, not just a "power on /
off". The signal therefore must come directly from the Picaxe chip.

Luckily the board has little "hidden" holes for that kind of connections. (Blue wire,
the signal in to the SRF05 directly from the chip). These holes, however, are not
described, simply omitted in the manual for the board. So I wonder how a newbie
should ever find out, personally I burned a SRF05 or two in my frustrated
attempts to get it right :)

If you follow the illustration above, you should be able to make the below code
work just fine. You will know that the SRF05 is getting a pulse-signal when the
little red LED on it´s back is flashing red.

http://www.rev-ed.co.uk/docs/srf005.pdf
http://letsmakerobots.com/taxonomy/term/75

40

SRF05 Code

symbol trig = 3 ‘ Define output pin for Trigger pulse
symbol echo = 6 ‘ Define input pin for Echo pulse
symbol range = w1 ‘ 16 bit word variable for range
main:
pulsout trig,2 ‘ produce 20uS trigger pulse (must be minimum of 10uS)
pulsin echo,1,range ‘ measures the range in 10uS steps
pause 10 ‘ recharge period after ranging completes
‘ now convert range to cm (divide by 5.8) or inches (divide by 14.8)
‘ as picaxe cannot use 5.8, multiply by 10 then divide by 58 instead
let range = range * 10 / 58 ‘ multiply by 10 then divide by 58
debug range ‘ display range via debug command
goto main ‘ and around forever

Notes:

I did not have a fresh SRF05, and so there are drilled extra holes and soldered pins
on the one on the picture.

Be aware that if you also connect servo(s) to the same Picaxe chip, program
execution may be bumpy with little irregular breaks when using things as the SFR05
that needs pulses. If it is important for you to have a steady program execution, or if
a servo acts totally irrational, it sometimes helps to have a small pause or turn off a
servos pulse for a short time in the code:

"low 3" or "pause 10". Apparently there is no system, it is just trial and error with
your particular setup.

This pages might have your interest: See what Robot Sees

http://letsmakerobots.com/node/316

	Contents
	Introduction
	Before you Start
	How to Start

	Items Needed - Picaxe
	Motor Driver
	Servo
	Sensor
	Motors
	Other Items

	Getting Started
	Sticking Together
	The Brains
	Project Board
	Project Board 2

	Motors
	Servo
	Sensor
	Let there be Life
	Setting the Sensor

	Fully Built
	Starting to Program
	Programming...

	Add some Extras
	How to find Picaxe Manuals
	Picaxe for Dummies
	Ground
	V
	V1 & V2

	Power on the Board
	Peripherals
	A, B, C
	D, E, F
	G, H

	Somthing (slightly) interesting

	How to connect SRF05
	SRF05 Code

