From Wikipedia, the free encyclopedia

Jump to navigation
Jump to search

Hero of Alexandria
Hero of Alexandria.png

17th-century German depiction of Hero
Native name Ἥρων
Born c. 10 AD
Died c. 70 AD
Residence Alexandria, Roman Egypt
Known for Aeolipile
Scientific career
Fields Mathematics , Physics

Hero of Alexandria (/ˈhɪər/; Greek: Ἥρων ὁ Ἀλεξανδρεύς, Heron ho Alexandreus; also known as Heron of Alexandria /ˈhɛrən/; c. 10 AD – c. 70 AD) was a mathematician and engineer who was active in his native city of Alexandria, Roman Egypt. He is considered the greatest experimenter of antiquity and his work is representative of the Hellenistic scientific tradition.

Hero published a well recognized description of a steam-powered device called an aeolipile (sometimes called a “Hero engine”). Among his most famous inventions was a windwheel, constituting the earliest instance of wind harnessing on land. He is said to have been a follower of the atomists. Some of his ideas were derived from the works of Ctesibius.

Much of Hero’s original writings and designs have been lost, but some of his works were preserved – mostly in manuscripts from the Eastern Roman Empire, and a smaller part in Latin or Arabic translations.

  • 1 Life and career
  • 2 Inventions
  • 3 Mathematics
  • 4 Cultural references
  • 5 Bibliography
  • 6 See also
  • 7 References
  • 8 Further reading
  • 9 External links

Life and career

Hero may have been either a Greek or a Hellenized Egyptian. It is almost certain that Hero taught at the Musaeum which included the famous Library of Alexandria, because most of his writings appear as lecture notes for courses in mathematics, mechanics, physics, and pneumatics. Although the field was not formalized until the twentieth century, it is thought that the work of Hero, his automated devices in particular, represents some of the first formal research into cybernetics.

Inventions

Hero’s aeolipile

Hero described the construction of the aeolipile (a version of which is known as Hero’s engine) which was a rocket-like reaction engine and the first-recorded steam engine (although Vitruvius mentioned the aeolipile in De Architectura some 100 years earlier than Hero). It was created almost two millennia before the industrial revolution. Another engine used air from a closed chamber heated by an altar fire to displace water from a sealed vessel; the water was collected and its weight, pulling on a rope, opened temple doors. Some historians have conflated the two inventions to assert that the aeolipile was capable of useful work.

Hero’s wind-powered organ (reconstruction)

  • The first vending machine was also one of his constructions; when a coin was introduced via a slot on the top of the machine, a set amount of holy water was dispensed. This was included in his list of inventions in his book Mechanics and Optics. When the coin was deposited, it fell upon a pan attached to a lever. The lever opened up a valve which let some water flow out. The pan continued to tilt with the weight of the coin until it fell off, at which point a counter-weight would snap the lever back up and turn off the valve.
  • A windwheel operating an organ, marking the first instance in history of wind powering a machine.
  • Hero also invented many mechanisms for the Greek theater, including an entirely mechanical play almost ten minutes in length, powered by a binary-like system of ropes, knots, and simple machines operated by a rotating cylindrical cogwheel. The sound of thunder was produced by the mechanically-timed dropping of metal balls onto a hidden drum.
  • The force pump was widely used in the Roman world, and one application was in a fire-engine.
  • A syringe-like device was described by Hero to control the delivery of air or liquids.
  • In optics, Hero formulated the principle of the shortest path of light: If a ray of light propagates from point A to point B within the same medium, the path-length followed is the shortest possible. It was nearly 1000 years later that Alhacen expanded the principle to both reflection and refraction, and the principle was later stated in this form by Pierre de Fermat in 1662; the most modern form is that the path is at an extremum.
  • A standalone fountain that operates under self-contained hydrostatic energy (Hero’s fountain)
  • A programmable cart that was powered by a falling weight. The “program” consisted of strings wrapped around the drive axle.
  • Around 100 AD, Hero had described an odometer-like device that could be driven automatically and could effectively count in digital form–an important notation in the history of computing. However, it was not until the 1600s that mechanical devices for digital computation appear to have actually been built.

Mathematics

Hero described a method for iteratively computing the square root of a number. Today, however, his name is most closely associated with Hero’s formula for finding the area of a triangle from its side lengths. He also devised a method for calculating cube roots in the 1st century CE.

Cultural references

  • A 1979 Soviet animated short film focuses on Hero’s invention of the aeolipile, showing him as a plain craftsman who invented the turbine accidentally
  • A 2007 The History Channel television show Ancient Discoveries includes recreations of most of Hero’s devices
  • A 2010 The History Channel television show Ancient Aliens episode “Alien Tech” includes discussion of Hero’s steam engine
  • A 2014 The History Channel television show Ancient Impossible episode “Ancient Einstein”
  • Paul Levinson’s Science Fiction novel “The Plot to Save Socrates” asserts that Hero was an American time traveler.

Bibliography

The book About automata by Hero of Alexandria (1589 edition)

The most comprehensive edition of Hero’s works was published in five volumes in Leipzig by the publishing house Teubner in 1903.

Works known to have been written by Hero:

  • Pneumatica (Πνευματικά), a description of machines working on air, steam or water pressure, including the hydraulis or water organ
  • Automata, a description of machines which enable wonders in temples by mechanical or pneumatical means (e.g. automatic opening or closing of temple doors, statues that pour wine, etc.); See Automaton and Bernardino Baldi’s translation
  • Mechanica, preserved only in Arabic, written for architects, containing means to lift heavy objects
  • Metrica, a description of how to calculate surfaces and volumes of diverse objects
  • On the Dioptra, a collection of methods to measure lengths, a work in which the odometer and the dioptra, an apparatus which resembles the theodolite, are described
  • Belopoeica, a description of war machines
  • Catoptrica, about the progression of light, reflection and the use of mirrors

Works that sometimes have been attributed to Hero, but are now thought most likely to have been written by someone else:

  • Geometrica, a collection of equations based on the first chapter of Metrica
  • Stereometrica, examples of three-dimensional calculations based on the second chapter of Metrica
  • Mensurae, tools which can be used to conduct measurements based on Stereometrica and Metrica
  • Cheiroballistra, about catapults
  • Definitiones, containing definitions of terms for geometry

Works that are preserved only in fragments:

  • Geodesia
  • Geoponica